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Mesoscopic dynamics of microcracks
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The mesoscopic concept is applied to the description of microcracks. The balance equations of the cracked
continuum result in mesoscopic directional balances of mass, momentum, angular momentum, and energy.
Averaging over the length of the cracks gives the corresponding orientational balances. A further averaging
process leads to the macroscopic balance equations of the microcracked continua. Dynamic equations for the
fabric tensors of different order are derived using a multipole moment expansion of the orientational crack
distribution function. The simple example of Griffith cracks is treated. The role of physical assumptions in the
microcrack representations and the different macroscopic internal variable representations of microcracks are
discussed.

PACS number~s!: 62.20.Mk, 46.50.1a, 81.40.Np
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I. INTRODUCTION

To find suitable and applicable models for microstru
tured mechanical materials is a challenge of contempo
physics, especially of continuum mechanics and statist
physics. An important particular~and relatively simple! ex-
ample in this respect is to describe the mechanical prope
of microcrack systems in elastic materials. The two ba
model levels are the continuum, where macroscopic v
ables are introduced to characterize the microcrack sys
and the statistical, where the properties and interaction
single microcracks or the embedding material are con
ered.

On the macroscopic, continuum levelcontinuum damage
mechanicsleads to suitable theories. In this phenomenolo
cal continuum theory thermodynamic internal variables
different tensorial order are used to calculate the influenc
cracks~and other damage! on elastic properties of the mate
rial and to predict failure. It is important to remark here th
the different continuum theories are far from being able
propose a single model forall important phenomena con
nected with cracking~multiaxial loading conditions, materia
stability, dynamics, etc.!. The competing theories use diffe
ent macroscopic mechanical and thermodynamic conce
The most important aspects discussed are the nature~e.g.,
tensorial order, physical meaning! of the proposed macro
sopic internal variables and the laws governing their ti
development, i.e., the corresponding macroscopic dynam
laws. We do not want to analyze the situation on the mac
scopic level, but want to emphasize here that the lack
understanding at this level, that is, a macroscopic phen
enological model for the experimental observations~e.g., in
the framework of irreversible thermodynamics!, is a serious
disadvantage in statistical physical modeling.

On the other hand, microcracking is an important probl
in statistical physics and is treated with two different a
proaches.Micromechanicsbuilds from detailed properties o
single cracks and extends the results with the help of sta
tical methods@1#. The ‘‘microscopic laws’’ for a crack em-
bedded in an ideal elastic continuum are well treated
known @2,3# and are difficult enough~long range, tensorial
aniso-
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tropic interactions with singularities! to mean a challenge fo
the basic principles of statistical physics on an equilibriu
and also a nonequilibrium level. The second large group
statistical models is based onlattice calculations and simu-
lations. These models introduce simple interactions betw
lattice elements~e.g., springs! and try to grasp some gener
qualitative properties of the phenomena with statistical me
ods. Some recent numerical and analytical investigati
suggest the validity of mean field behavior in the presence
quenched disorder in isothermal systems~which we can ex-
pect in ordinary experimental situations!, arguing that failure
due to microcracking can be treated as a first order ph
transition and the whole process as spinodal nucleation@4#.
In early investigations spinodal nucleation was discussed
a thermally activated process, where the quenched disord
irrelevant@5,6#. Some recent treatments claim that it is mo
realistic to consider a situation where a system is effectiv
at zero temperature and only the quenched disorder is
evant@7,8#. All these investigations concentrate on the av
lanchelike behavior of microfracturing and calculate the sc
ing properties. However, the mean field behavior observe
numerical simulations of lattice models supports the vi
that phenomenological internal variable models can cha
terize the material, especially when we are far from the q
sistatic regime.

In this paper we propose an idea to bridge the gap
tween the microscopic-statistical approach and
macroscopic-phenomenological one. We introduce a leve
modeling that we callmesoscopic, because we go under th
continuum level and use the statistical distribution functi
of the microcracks. However, instead of detailed microsco
modeling, general ideas are used to get the governing e
tions of the different distribution functions. The suggest
method can be used to derive different macroscopic inte
variable models that are compatible with the statistical
scription and to incorporate micromechanical informati
from single microcracks, thus connecting the statistical a
phenomenological approaches.

Taking into account directional data distributions~e.g.,
normal vectors of planar microcracks! Kanatani@9# treated
different possible statistical descriptions of directional d
6206 ©2000 The American Physical Society
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PRE 62 6207MESOSCOPIC DYNAMICS OF MICROCRACKS
and found a coordinate independent description in the fo
of generalized Fourier series, which is a coordinate indep
dent form of the multipole moment expansion known fro
classical electrodynamics@10#. Kanatani called the corre
sponding moments of the directional data distribution
fabric tensors. So we can get a statistically founded clas
cation of the macroscopic internal variables without any
formation on the possible dynamic properties. After that, d
ferent macroscopic thermodynamic methods, which
independent of the previous investigations, are used to
dynamic equations for the macroscopic variables.

However, in the case of another important family of m
crostructured continua, liquid crystals, the same moment
ries expansion is successfully applied to get not only
possible macroscopic thermodynamic variables but a
some general information about their dynamic equati
@11–18#. Here balance equations are applied to the mic
structured continuum and by using them we can get so
information on the mesoscopic dynamics and also derive
namic equations for the macroscopic variables. These m
roscopic variables are the same moments of the orienta
of liquid crystal molecules that are used for microcrack
continua; however, here they are called alignment tenso

In this paper we apply the mesoscopic theory to get
dynamic equations of the mesoscopic variables, to introd
macroscopic variables, and to obtain the general form
their dynamic equations. These considerations give a g
possibility for comparing the macroscopic consequence
the mesoscopic approach with other macroscopic theo
for example, with rational thermodynamic theories of micr
structured continua, where the derivation of ‘‘micromome
tum balances’’ is based on a particular application of ma
rial frame indifference@19–21#. On the other hand, we ca
introduce specific single crack properties~which is impos-
sible in the case of liquid crystals! to solve the dynamic
equation for the distribution function and get information f
from the quasistatic range that is comparable with that fr
micromechanical and lattice models.

II. BASIC FIELDS AND FUNCTIONS

In liquid crystals molecules of restricted symmetry co
stitute the material continuum. In nematic liquid crystals t
molecules are rodlike; therefore we introduce a quantity t
characterizes the orientation of the molecules. There are
basic possibilities: we can give it as an additional vecto
field variable, when this~unit! vector is called the macro
scopic director. In this way we can arrive at the Erickse
Leslie-Parodi theory of nematics. The other possibility is
introduce the director as a mesoscopic variable. In this c
the additional orientational information~a unit vector! plays
a similar role to time and space and becomes a variabl
the field quantities. In this way we arrive at the mesosco
theory of liquid crystals, where all the field quantities a
defined on the extended nematic spaceS23E3I, whereS2

denotes the unit sphere andE and I represent the space an
the time. If the internal structure that we are modeling
more complicated then the characteristic mesoscopic v
ables can be more complicated, too. For example, in the
of biaxial nematics the molecules have two axes and
resulting symmetry is best described by quaternions.
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What can we say about damaged materials? Here
damage can have a more complicated microscopic struc
than in liquid crystals, but we can restrict ourselves to
simple and frequently investigated case of planar micr
racks. Now the damage consists of small planar surface
ments embedded in an elastic or elastoplastic~or any kind
of! background material. In this case a crack can be rep
sented by its surface vector. If the cracks are fixed in
material, that is, they do not move independently of the m
terial elements, then we can apply the mesoscopic conce
describe the microstructure. Therefore a characteristic m
rial element of the microcracked continuum is a crack
gether with the containing base material.

Let us observe the difference between liquid crystals a
microcracks somewhat more closely. With a mesosco
theory we intrude into the representative volume elemen
the continuum description and instead of a homogeniza
procedure~from where we would arrive at the continuum
theory! we suppose that the macroscopic fields themse
depend on the microstructure and therefore we consider
statistical distribution of the orientations. In liquid crysta
the shape of the molecules represents the microstructure
therefore the representative volume elements of the orie
tion and the other fields~especially mass! can be the same
However, in the case of microcracks the status of the mic
structural information is different, because they can be c
sidered to be embedded in an elastic~or viscoelastic, or any-
thing but continuous! base material. In this case we are usi
different representative volume elements for the meso-m
transition and the macro-micro transition.

In this paper we give a mesoscopic model of a continu
that contains several randomly distributed microcracks. T
microcracks are supposed to be two dimensional and
every microcrack is characterized by its surface ‘‘vecto
lPE`E and spacetime positionr PM . Therefore the domain
of all field quantities of the mesoscopic theory is interpre
on a subset of thisspace. For example, thedirectional den-

sity r̃ of the continuum is given as

r̃:E`E3M→R1, ~ l, r !° r̃~ l, r !,

whereE is a three dimensional Euclidean vector space andM
is the spacetime~a structured four dimensional affine space!.
If we are in a nonrelativistic spacetime and do not insist o
frame independent description we can introduce an ine
observer~as usual! @22#. As a final simplification we will use
polar vectors instead of axial ones to represent the surfa
of the cracks, introducing the usual form and symmetry
quirement for the density function:

r:El3E3I°R1, ~ l,x,t !°r~ l,x,t !,

r~ l,x,t !5r~2 l,x,t !.

The direction, position, and time of the microcracks a
denoted by (l,x,t)PEl3E3I. The corresponding meso
scopic spaceEl3E3I, whereEl andE are three dimensiona
Euclidean spaces andI is a one dimensional oriented vecto
space, will be called thedirection space. In the following we
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suppose that the directional number density of the cracks
a finite support, that is, we consider a finite piece of mate
where the maximum length of the cracks is limited by t
size of the sample~for example!. Let us denote this maxima
length byl max.

A further important quantity can be introduced if we d
compose the directionl into a lengthl PR1 and an orienta-
tion nPS2 as l5 ln, wheren is a unit vector (n251). Now
theorientational densityof the cracks is defined by the inte
gral

r̂~n,x,t !5E
0

l max
r~ ln,x,t !l 2dl. ~1!

We will call theS23E3I mesoscopic space of the orie
tation, position, and time (n,x,t) of the microcracks theori-
entation space. For the further calculations it is very impor
tant to keep in mind the basic applicability criteria of th
mesoscopic concept: the cracks are fixed in the base
tinuum. There is a fixed amount of base material for ev
microcrack. In this case, and only in this case, the densit
the media will characterize the density of the number
cracks also. Taking this into account, we can write that

r̄~x,t !ª^r~ l,x,t !&ª 1
2 E

R3
r~ l,x,t !dVl5

1
2 E

S2
r̂~n,x,t !dn

is the macroscopic density of the microcracks at spacet
point (x,t). HeredVl denotes the Lebesque measure of
microcrack part of the direction space, anddn is the corre-
sponding surface measure ofS2 in the orientation space. Fur
thermore,

M ~ t !5E
R3

^r~ l,x,t !&dV

5E
R3

r̄~x,t !dV

5 1
2 E

R3
E

R3
r~ l,x,t !dVl dV

5 1
2 E

R3
E

S2
r̂~n,x,t !dn dV

is the total mass of the sample continuum. The symme
polar vector representation@r( l,x,t)5r(2 l,x,t) and
r̂(n,x,t)5 r̂(2n,x,t)# necessitates the factor of1

2 in the last
two integrals.

It is useful to normalize the densities by introducing t
directional probability distribution

f ~ l,x,t !ª
r~ l,x,t !

r̄~x,t !
, ~2!

orientational probability distribution

f̂ ~n,x,t !ª
r̂~n,x,t !

r̄~x,t !
, ~3!

and length probability distribution

f l~ l,x,t !ª
r~ l,x,t !

r̂~n,x,t !
5

f ~ l,x,t !

f̂ ~n,x,t !
. ~4!
as
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At the end of this section let us remark that a mesosco
theory formally resembles a mixture theory that uses the c
tinuous directional or orientational ‘‘index’’l or n for the
‘‘components’’ instead of a discrete one. This analogy can
a help in the interpretation of the directional and orien
tional ‘‘component’’ equations.

III. MESOSCOPIC KINEMATICS

The following formulas make it possible to give substa
tial balances in the mesoscopic continuum in addition to
local ones, so we can grasp the meaning of the correspon
mesoscopic balances more easily. Let us consider a piec
continuum material. Now we refer to the material eleme
with their positionX at some initial instantt0, as usual. Let
us denote byx the position of the appropriate material el
ment at the instantt. We give the position of the materia
elementX at the timet with the map

x:E03I�E,~X,t !°x~X,t !.

Here we denoted the three dimensional Euclidean ve
space of positions byE and the structural space of materi
points byE0. Similarly, we can give the material element
the positionx and instantt with the map

X:E3I�E0 ,~x,t !°X~x,t !.

The two maps have one to one correspondence and the
each other’s inverse at the same instantx„X(x,t),t…5x and
X„x(X,t),t…5X.

The mesoscopic structure is characterized by the varia
l PEl . In the case of nematic liquid crystals this is the u
sphereS2, for biaxial nematics it isS3, and for planar mi-
crocracks a subset ofE. The microstructure is connected t
the material element; therefore we can give its value at
instant t corresponding to the material eleme
X: l:E03I�El ,(X,t)° l(X,t).

Now we define the velocities

vª
]x

]t
~X,t ! and vlª

] l

]t
~X,t !.

If a field quantity depends on the directionl and the position
x we can define its material time derivative as follows:

ḟ ~ l ,x,t !ªS ] f

]t
1v•¹ f 1vl•¹ l f D +~ l,x,t !~X,t !. ~5!

Until now we have considered a continuum; therefore
positionx and the directionl were treated as fields. Howeve
the situation is more difficult because we are below the c
tinuum level. In the case of liquid crystals on the micr
scopic level we have single molecules. For cracks we
suppose that we are in the continuum domain as regards
mass, but the material elements contain single microcra
and therefore the direction can be discontinuous from cr
to crack at this level. Our task is to get a continuum desc
tion and at the same time keep some information from be
the usual macroscopic continuum level. Therefore we
complish a second homogenization, forming a bigger ma
rial element from the micro-meso ones and introducing
center of massX0 for that macro material element with vo
umeVm :
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X05

E
Vm

Xr~X!dVm

E
Vm

r~X!dVm

.

Now if we completely replaced the micro material eleme
with macro ones (X→X0) we would get the macroscopi
directorl(X0 ,t). Instead of doing that, we would like to kee
some microscopic information and therefore we make
X→(X0 ,l ) substitution, supposing that there is a distributi
of directions inside the macro element. In this wayl is no
longer a field quantity as we supposed above, but stand
equal footing withX0 and plays an independent role chara
terizing the macro continuum element. Therefore the pre
ous functions defined on the micro material space beco
functions on the mesoscopic space~e.g., the velocitiesv,vl).
Moreover, as the continuity of the variables is secured w
the homogenization procedure we can introduce the prev
derivative ~5! as a material derivative on the mesosco
space.

IV. DIRECTIONAL BALANCES

After these preparations we are ready to get the me
scopic balance equations of the directional quantities. Al
the following local balances were derived from the prop
global balances using a generalized form of the Gau
Stokes integral theorem~or Reynolds transport theorem
equivalently!. The difference between the usual spaceti
balances and the following generalized balances where
spacetime variables are completed with the direction is
now the ‘‘configuration space’’ of the continuum is six d
mensional. Therefore the velocity space is also six dim
sional; we get an additional directional velocity compone
Moreover, the local balances will have an additional ‘‘cu
rent term’’ with the divergence of the directional part of th
total (233) dimensional current densities (“ l•). Using the
introduced mesoscopic material time derivative~5! we will
give the corresponding substantial balances also.

First we can get the fundamental balance of mass

]r

]t
1“•~rv!1“ l•~rvl !50 ~6!

and

ṙ1r~“•v1“ l•vl !50, ~7!

where v is the directional material velocity andvl is the
velocity of the change of crack orientation and length. H
and throughout this section all quantities are direction
their domain is the subset of the direction space.

The balance of momentum is given by

]rv

]t
1¹•~rv+v2tT!1¹ l•~rvl+v!5rf ~8!

and

r v̇2“•tT5rf. ~9!
s
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Here t is the stress,f is the body force density, and+ is the
notation of tensorial product in continuum physics. The s
perscriptT denotes the transpose of the corresponding s
ond order tensor. We assumed here that the change of
mentum, even if it depends on the direction, is due only
the body and normal surface forces, that is there are no
face forces in the direction component, and that there is
conductive directional momentum current.

Similarly, for the balance of the moment of momentu
we will get the form

]rs

]t
1“•~rv+s2pT!1“ l•~rvl+s!5tas1rg, ~10!

wheres is the directional spin density,tas denotes the anti-
symmetric part of the stress tensor,p is the couple stress
andg is the density of the couple force. The substantial fo
is

r ṡ2“•pT5tas1rg. ~11!

Finally we give the directional internal energy dens
balances. These we got by subtracting the balances of
kinetic and rotational energy from the balance of the to
energy:

]re

]t
1“•~rve1q!1“ l•~rvle1ql !5“+v:t1rJ.

~12!

Here q and ql are the heat current and the directional he
current, respectively~both mesoscopic!. J is the internal en-
ergy production related directly to the microcrack propag
tion. The corresponding substantial form is

rė1“•q1“ l•ql5“+v:t1rJ. ~13!

V. ORIENTATIONAL BALANCES

Traditionally in damage mechanics we are interested o
in the orientational part of the data distributions; when t
length of the cracks is supposed to be statistically indep
dent of the orientational part of the data distribution, we u
averaged, uniform size cracks in the treatment. There
here we give the balances of the orientational quantities a
If we want to get an orientational quantity from a direction
one we should average over the microcrack length using
directional distribution functionf and length distribution
function f l @see Eqs.~2! and~4!#. To do this we will integrate
the directional balances over the microcrack length. It is w
thy of note here that the time derivation and normal div
gence commute with the integration over the length, and
an arbitrary directional functionh

E
0

l max
“ lh~ l!l 2 dl5“nE

0

l max
h~ ln!l 2 dl. ~14!

The commutation properties and Eq.~14! suppose severa
identifications and regularity properties. For example, in c
culating the formula~14! the splitting of the directional de
rivative was accomplished as“ l5„n•“ l ,(I2n+n)“n…

5(]/] l ,“n), and (0,a)5a. We will use the caret for the
orientational quantities~as above! and introduce the notation
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^ & l for the length averaging. Denoting the orientational v
locities by v̂ª^v& l and v̂lª^vl& l , then we get the orienta
tional mass balance

]r̂

]t
1“•~ r̂ v̂!1“n•~ r̂ v̂l !50. ~15!

In substantial form this is

ṙ̂1 r̂“• v̂1 r̂“n• v̂l50. ~16!

The balance of momentum in local form can be given

]r̂ v̂

]t
1“•~ r̂ v̂+ v̂2 t̂T!1“n•~ r̂ v̂l+ v̂2T̂T!5 r̂ f̂. ~17!

Here we introduced the orientational stresst̂ and orienta-
tional microstressT̂ as follows:

t̂5 r̂ v̂+ v̂2E
0

l max
~rv+v2t!l 2 dl

5 r̂~ v̂+ v̂2^v+v& l !1E
0

l max
tl 2 dl,

T̂5 r̂ v̂l+ v̂2E
0

l max
rvl+vl 2 dl5 r̂~ v̂l+ v̂2^vl+v& l !.

We can give the substantial form of the orientational m
mentum balance as

r̂ v̇̂2~“• t̂T1“n•T̂T!5 r̂ f̂. ~18!

The appearance of microstress is remarkable, a con
tive orientational momentum current in the orientational m
mentum balance.

The local balance of the moment of momentum is

]r̂ ŝ

]t
1“•~ r̂ v̂ŝ2p̂T!1“n•~ r̂ v̂l ŝ2P̂T!5 t̂as1 r̂ĝ. ~19!

Here ŝ5^s& l is the orientational spin andĝ5^g& l is the ori-
entational couple force vector. However, we should be ca
ful because, for example,t̂as5” ^tas& l , but we should conside
the previous definition. Moreover, the couple microstressp̂

and the neworientational coupling microstressT̂ are defined
as

p̂5 r̂~ v̂+ ŝ2^v+s& l !1E
0

l max
p l 2 dl,

P̂5 r̂~ v̂l+ ŝ2^vl+s& l !.

It is easy to see thatp̂ is orthogonal ton. The corresponding
substantial equation is

r̂ ṡ̂2~“•p̂T1“n•P̂T!5 t̂as1 r̂ĝ. ~20!
-

s

-

c-
-

e-

The orientational balance of the internal energy is ve
similar to the directional one, but the conductive currents a
the second source term, are not simply the average of
corresponding directional quantities. The single avera
orientational term is the internal energy itself (ê5^e& l).

]r̂ê

]t
1“•~ r̂ v̂ê1q̂!1“n•~ r̂ v̂l ê1q̂l !5“+ v̂: t̂1 r̂Ĵ.

~21!

The definitions of the heat currents and the source te
are as follows:

q̂5 r̂~^ve& l2 v̂ê !1E
0

l max
ql 2dl,

q̂l5 r̂~^vle& l2 v̂l ê !,

Ĵ5 r̂^J& l1E
0

l max
“+v:tl 2dl2“+ v̂: t̂.

We can easily get the substantial form:

r̂ ė̂1“•q̂1“n•q̂l5“+ v̂: t̂1 r̂Ĵ. ~22!

VI. MACROSCOPIC BALANCES

In the calculation of the macroscopic balances we can
either the directional or the orientational balances. Maybe
first way is the more convenient. We will denote the mac
scopic quantities with the overbar and the averaged di
tional quantities that are calculated with the help of the
rectional distribution function~2! with angular bracketŝ &.
The corresponding macroscopic equations are calculate
integration of the directional balances overl. This integration
commutes with the time and space derivatives and elimin
the divergence of the directional derivative, because any
rection functionh has a compact support,

E
Vl

“ l•h dVl50.

If the macroscopic~barycentric! velocity v̄5^v& then,
with the previously introduced macroscopic densityr̄, the
balance of mass can be written as

]r̄

]t
1“•~ r̄ v̄!50. ~23!

The balance of momentum is

]r̄ v̄

]t
1“•~ r̄ v̄+ v̄2 t̄T!5 r̄ f̄, ~24!

where the macroscopic force densityf̄5^f&. Again the mac-
roscopic stress is not a simple average; it can be calculate

t̄5E
Vl

t dVl1r~ v̄+ v̄2^v+v&!.
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The balance of the moment of momentum and the balanc
internal energy can be calculated similarly:

]r̄ s̄

]t
1“•~ r̄ v̄+ s̄2p̄!5 t̄as1 r̄ ḡ, ~25!

where the macroscopic couple force densityḡ5^g&. The
macroscopic couple stress also includes a contribution du
deviations ofv ands from the average; this can be calculat
as

p̄5E
Vl

p dVl1r~ v̄+ s̄2^v+s&!.

The balance of the internal energy becomes

]r̄ē

]t
1“•~ r̄ v̄ē2q̄!5“+ v̄: t̄1 r̄J̄, ~26!

where

q̄5 r̄~^ve&2 v̄ē !1E
Vl

qdVl ,

r̄ J̄5 r̄^J&1E
Vl

“+v:t dVl2“+ v̄: t̄.

Let us remark that on the directional and orientatio
level it was unreasonable to suppose a positive entropy
duction but it makes sense on a macroscopic level and
can exploit it.

VII. CRACK PROPAGATION

For the most frequently used materials in damage m
chanics the balance equations given above are too gen
Therefore we introduce some simplifying assumptions.~1!
The base material does not have an internal spin, that
crack does not rotate independently from the base mate
~2! There are no couple forces (g50) and coupling stresse
(P50). ~3! There are no external body forces (f50). ~4!

The material is in mechanical equilibrium (v̇50). ~5! The
velocity does not depend on the crack size and orientat
this means it is equal to the barycentric velocity@v( l,x,t)
5 v̄(x,t)#.

Because of the first condition we do not need the bala
of the internal energy and the third condition simplifies t
spin balance to a symmetric stress. For this symmetric st
the balance of the momentum together with the fourth a
fifth conditions results in an equation for the mechani
equilibrium:

“•t50. ~27!

Very similarly, we can get in the orientational space

“• t̂50. ~28!

Moreover, the balance of mass simplifies considerably
cause of the last condition:

] f

]t
1 v̄•“ f 1“ l•~ f vl !50, ~29!
of

to
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e
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e-

where f 5r/ r̄ is the directional probability density as it wa
given in Eq.~2! and v̄ is the macroscopic velocity. The sub
stantial form is remarkably simple:

ḟ 1 f“ l•vl50.

Integrating over the crack length we get the following orie
tational balance:

] f̂

]t
1 v̄•“ f̂ 1“n• f̂ v̂l50, ~30!

where the orientational crack velocityv̂l was introduced. Let
us observe that Eq.~29! is formally the same as Eq.~30! but
the functions are different~directional/orientational!.

Therefore our simplified final system of equations is E
~27! and ~29! in direction space, or Eqs.~28! and ~30! in
orientation space. Now we can consider several possibili
for a closed, soluble system. We can try to close the sys
on the mesoscopic or on the macroscopic level.

~a! We can consider some specific information on t
crack propagation and calculate the crack growth speedvl .
This is promising because this velocity is connected to
micromaterial element and therefore we need to investiga
single crack to calculate it. In this way, by introducing th
corresponding state space and considering some constit
assumptions on the mesoscopic stress, there is a good ch
of closing the system at the mesoscopic level. The proble
atic point is the constitutive assumption fort. On the meso-
scopic level, without an inequality from the second law f
the mesoscopic functions, the constitutive theory is more
proximate.

~b! The other possibility is to calculate the macroscop
balances from the mesoscopic ones. In this case the orie
tional balances are more promising, because here the
ment series expansion gives a familiar and understood
cess~see, e.g.,@12#!. We can try similar series expansions
the directional space too, but the most straightforwa
choices mix the length and orientational information a
therefore the meaning of the macroscopic quantities is
evident.

A. Moment series expansion and order parameters

First we will investigate the consequences of moment
ries expansion of the distribution functionf̂ and Eq.~30!. We
can introduce the following alignment-fabric tensors:

~31!

Now let us turn our attention to the series expansion
Eq. ~30!. We can get the following system of equations f
the kth moment@24#:
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wherev5 1
2“3v, dv̂5v̂2v̄, d v̂5 v̂2 v̄, and we denoted

the components of the velocity with the indexp to avoid
misunderstanding. In this way we have a whole set of p
sible macroscopic damage parameters together with a
eral form for their dynamic equation. Let us investigate mo
closely the dynamic equation of the second order tensor t
in the expansion. It seems useful to put down the definit
and the dynamic equation for that term separately as follo

~32!

and we get the following dynamic equation:

~33!

or equivalently

~34!

Without calculating the last term we can see thata is a nor-
mal internal variable in the sense that a local first order
ferential equation describes its change.

It is worth investigating the uniaxial case separate
when the alignment tensors can be expressed in terms o
order parametersS(k) and a unit vectord in the following
way:

~35!
s-
n-

e
m
n
s:

-

,
he

Moreover, for the vectord we can get

Let us remark that there are cases when a truncation o
series leads to paradoxes. If the microcrack distribution
uniaxial then the best fitting alignment tensor can result
negative crack densities, the so called anticrack region
the approximate data distribution@25#. This unexpected
property can be removed if we use a director~vectorial! in-
ternal variable representation instead of the even order tr
less tensors. The single vectorial approximation results
macroscopic director theory.

B. Solution for the distribution function: Griffith cracks

In this section the equation of motion for the mesosco
distribution function is specialized by considering a spec
single crack model. In this case we can start from the dir
tional level and calculate the crack size distribution functio
The following additional assumptions are introduced.~1!
The crack surface area can increase, but cannot decreas~2!
The crack velocity is independent of other cracks in the
cinity, i.e., cracks do not interact.~3! Crack inertia is ne-
glected in the expression for the crack velocity, i.e., it
assumed that the crack stops enlarging instantaneously w
the external load stops changing.~4! All the idealizations
assumed by Griffith@26# ~e.g., two dimensions, ideal elliptic
cracks, etc.! are supposed here. Let us observe that th
seemingly restrictive conditions are in some respects m
general than the restrictions used explicitly or implicitly
models of micromechanical origin@2,1,3#. For example, we
did not assume special crack orientations or definite inte
tions between the microcracks.

From the mesoscopic balance of mass we derived the
lowing differential equation for the directional distributio
function:
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] f

]t
1 v̄•“ f 1“ l•~ f vl !50. ~36!

In the following we use spherical coordinates. In spheri
coordinates the mesoscopic velocityvl is decomposed into
the length change velocityvc and the orientation change ve
locity v, which is zero in our model:

vl~ l,x,t !5„vc~ l,x,t !,v~ l,x,t !…. ~37!

From the model of Griffith@26# it follows that the crack
length change velocity is

vc52
2

m
l 3/2Ṙ, ~38!

whereR is the stress at the location of the crack, andm is a
material dependent constant. In the following we consi
the case where slowly changing external loadsP andQ are
applied to the sample as shown in Fig. 1.

The R used by Griffith has been given by Inglis@27# in
terms of the parametersa0 , b, andu, whereu is the angle
between the crack orientation and they axis, anda0 is the
ratio of diameter to thickness of the crack~the ratio of the
large to small axis of the ellipse describing the crack in
model of Griffith!. a0 is very large and is assumed to b
constant in time according to our preliminary assumptio
~because otherwise the crack length and orientation wo
not be the only crack variables!. b is the parameter of the
ellipse. According to the previous assumption (a0@1) the
stress is maximal forb5p, i.e., on the tip of the crack~the
real maximum is very close to that, at least for Griffi
cracks!. Therefore we will here setb5p. u is constant in
time because the crack cannot change its orientation. W

FIG. 1. The loaded sample with a crack, according to Griffi
@26#.
l

r

e

s
ld

th

these assumptions we obtain from the paper by Griffith@26#
the following expression for the stress change rate:

Ṙ5c1~ Ṗ1Q̇!1c2~ Ṗ2Q̇!,

c15
~e2a021!cos~2Q!

cosh~2a0!21
, ~39!

c25
sinh~2a0!

cosh~2a0!2cos~2Q!
.

The coefficientsc1 andc2 depend on crack orientation, bu
in our model not on position and time. If we average ov
different crack orientations, the result will depend on t
order parameters introduced above.

Now the mesoscopic velocityvl derived from the expres
sions~39! and ~38! is introduced into the differential equa
tion for the distributionf. In spherical coordinates we have

“ l•~vl f l !5
1

l 2

]

] l
~ l 2vcf !

5
1

l 2

]

] l S 2
2

m
l 7/2@c1~ Ṗ1Q̇!1c2~ Ṗ2Q̇!# f D ,

~40!

which results in the equation for the distribution function,

d f

dt
52“ l•~vl f !5

1

l 2

]

] l S 2

m
l 7/2@c1~ Ṗ1Q̇!1c2~ Ṗ2Q̇!# f D .

~41!

Separation of the variables gives the solution of the differ
tial equation. Moreover, we can go further, introducing t
moments of the distribution function as macroscopic va
ables. From Eq.~41! we can derive evolution equations fo
particular moments also.

In the case of Griffith cracks we can introduce the orie
tational order parameters and the length order paramete
macroscopic quantities describing the mesoscopic distr
tion. However, there are several other possibilities. The qu
tion arises which macroscopic parameter is relevant for
mechanical properties of the material. Here we mention
example of a macroscopic parameter that is different fr
the moments. In a simple variation of the one dimensio
‘‘loose bundle parallel bar’’ model of Krajcinovic@1#, the
material is assumed to consist of elastic parallel bars of fi
diameterl 0. When the projection of the crack length perpe
dicular to the bar axis is greater thanl 0, the bar is broken and
does not support stresses any more. The damage parameD
is introduced as the ratio of broken bars to the whole num
of bars. Translating this definition to the mesoscopic the
with Griffith cracks we can define

D~x,t !5E
0

l 0
f ~ l ,x,t !l 2 dl ~42!

as a new macroscopic parameter. The mesoscopic th
provides tools to deal with this damage variable also~dy-
namics, relation to the moment series expansion, etc.!.
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VIII. DISCUSSION

In this paper we investigated the applicability of the m
soscopic concept to microcracks. The physical conditi
show that if we consider planar microcracks that are fixed
the surrounding medium~no diffusion, unlike dislocations!
then the formalism and results developed for liquid cryst
are applicable and can give some fundamental informa
on the possible macroscopic internal variables and also
their dynamics.

For example, according to the present investigation
moment series expansion of the orientational distribut
function does not close the long discussion on the natur
the tensorial order of the internal variables in continuu
damage mechanics. First of all the introduction of an ori
tational distribution function is only a convenient simplific
tion of the situation and there can be cases when the le
and the orientation of the cracks are statistically depend
On the other hand the dynamics of the microcrack distri
tion depends on the mesoscopic space.

Sometimes a vectorial representation is simpler and
better than a tensorial one~uniaxial case!. This can be inter-
preted as a special case of uniaxiality in the fabric ten
description. The situation is best seen from the point of vi
of liquid crystal theories, where both kinds of description a
present. Similar symmetry requirements as in the case
microcracks~head-tail symmetry! result in only even order
terms in the alignment tensor series expansion, but the
torial director theory of Ericksen-Leslie-Parodi-Verha´s is
well usable~and somewhat simpler! in many systems.

In continuum damage mechanics we can find example
very different damage descriptors~scalars@28,29#; vectors
@30–33#; second order tensors@1#; higher order tensors@34#!.
From a mesoscopic point of view the relation between
macroscopic theories with internal variables of different te
sorial order is clear@13,14,16#. Furthermore, the mesoscop
theory gave a particular form of the possible dynamic eq
tions on both the mesoscopic and the macroscopic le
Without calculating a particular source term we can see
it is a first order equation in the time and space derivativ
Using further specific assumptions about the dynamics of
extension of single microcracks, one can get a closed sys
n

ys

ys
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of equations for the dynamics of the moments of the mic
crack distribution and for the distribution function itself.

It is important to see that our results do not correspond
some other microstructural continuum theories@19,20,35#,
where a second order equation is supposed for the dyna
of the microstructure. Let us give a closer look at this prop
sition. According to the suggestion of Capriz@19# we include
a general kinetic energy term in the energy balance and a
some calculations based on the principle of material fra
indifference we get for the micromomentum balance@20#

rF S ]̇k

]ṅ
D 2

]k

]n G2rb1x50 ~43!

where n is a parameter of the microstructure~e.g., micro-
crack length!; b andx can be interpreted as ‘‘microforces
and ‘‘microstresses’’ and they must be given constitutive
The first term containsk(n,ṅ), the ‘‘micro kinetic energy.’’
It is easy to prove that this term cannot result in a first or
equation forn.

On the other hand, we can make some remarks abou
statistical approaches, too. The mesoscopic theory in s
sense supports the validity of the mean field description
the case of simple crack orientation distributions when
first terms of the momentum series expansion can repre
the length distribution functions. For example, this can
expected when uniaxial loading conditions are applied to
initially undamaged material, as is expected in lattice mod
where mean field scaling is observed@8#. However, the rea-
son for long standing metastable states should be expla
on the phenomenological level also.
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@21# M. Šilhavy, The Mechanics and Thermodynamics of Contin

ous Media~Springer-Verlag, Berlin, 1997!.
@22# T. Matolcsi,Spacetime Without Reference Frames~Akadémiai
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